D12.-14. Expression of target genes in acanthocephalans by RT-qPCR reactions and transcriptome and gene expression profiling in fish intestine with respect to different metal exposure conditions

Irena Vardić Smrzlić, Sara Šariri

THIRD PROJECT MEETING Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)

Zagreb, 19th May 2023

History of fish Acanthocephala research in Croatia

- Long history of Acanthocephala research
- Since 1930s (Babić, 1935)
- Genera: Pomphorhynchus, Echinorhynchus, Acanthocephalus, Neoechinorhynchus, Dentitruncus
- during the 80s and 90s no research
- 2021. for the first time *Acanthocephalus rhinensis*

Sampling site	Species	ecies Fish host		
	Matachinorhynchus	Trachyrincus scabrus		
	truttao	Lota lota		
	liullue	Esox lucius		
	Acapthocophalus lucii	Lota lota		
	Acunthocephalas lach	Esox lucius		
Different former	Acanthocephalus anguillae	Barbus barbus		
Yugoslavia areas	Neoecinorhynchus rutili	Onchorhynchus mykiss	Babić, 1935	
		Trachyrincus scabrus		
		Lota lota		
	Romphorbunchus Igouis	Silurus glanis		
	Pomphornynchus laevis	Barbus barbus		
		Abramis brama		
		Acipenser ruthenus		
Prošćansko lake, NP "Plitvička lakes". Croatia	Metechynorhynchus truttae	Salmo trutta	¥	
Lake Kozjak, NP "Plitvička lakes", Croatia	Acanthocephalus lucii	Salmo trutta	Sinžar, 1955	
Bohinjsko lake and		Salmo trutta		
tributary Savica, Slovenia	Neoechinorhynchus rutili	Onchorhynchus laevis	Šinžar, 1956	
Una River, Bosnia and Herzegovina	Dentitruncus trutae	Salmo trutta		
	Pomphorhunchus laquis	Salmo trutta		
Savinja River, Slovenia	Fomphornynchus laevis	Thymallus thymallus		
	Metechinorhynchus truttae	Salmo trutta	Brglez, 1962	
	Neoechinorhynchus rutili	Salmo trutta		

Map of Acanthocephala species in Croatia

A. rhinensis

Haplotype network of Acanthocephala in Croatia

Nucleotide diversity of ITS and COI region in analysed acanthocephalan species. Number of haplotypes (H), number of polymorphic sites (S), nucleotide diversity ($\% \pi$) and haplotype diversity (Hd) are given.

Species		ΙΤ				СОІ				
	Ν	н	S	% π	% Hd	N	н	S	% π	% Hd
P. laevis	23	6	9	0.230	63.2	31	22	28	0.446	92.0
P. tereticollis	10	3	2	0.111	60.0	8	7	22	1.156	96.4
D. truttae	5	4	7	0.654	90.0	8	7	14	0.732	96.4
A. anguillae	4	3	3	0.250	83.3	7	6	14	0.892	95.2

Vardić Smrzlić I., Čolić B., Kapetanović D., Šariri S., Mijošek T. Filipović Marijić, V. Phylogeny and genetic variability of Rotifer's closest relatives Acanthocephala: an example from Croatia, *Hydrobiologia, submitted*

Dentitruncus truttae Sinzar, 1955

Dentitruncus truttae, SEM

Distribution

WoRMS - World Register of Marine Species - Dentitruncus truttae Sinzar, 1955 27/06/2023

Biology

Intermediate hosts	Gammarus balcanicus
	G. italicus
	Echinogammarus roco
	E. tibaldi
Hosts	brown trout (<i>Salmo trutta</i>)
-	rainbow trout (Oncorhynchus mykiss)
	adriatic trout (Salmo obtusirostris)
	grayling (Thymallys thymallus)
	powan (Coregonus clupeoides)
	european eel (<i>Anguillae anguillae</i>)

Genus Dentitruncus

D. truttae – partial 18S rRNA region: no intra- or interpopulation differences

D. truttae – partial COI gene

Vardić Smrzlić et al, 2013

Site 1 Krčić

Isolation of RNA of appropriate concentration and quality isolated from acanthocephalans

No.	Sample Name	Nucleic Acid ID	Concentration (ng/ul)	Volume(ul)	Total amount(ug)	RIN	Sample QC Results
1	C7A_cont	EKRN2200324 60-1A	62.74	31	1.94496	8.3	Pass
2	C7B_cont	EKRN2200324 61-1A	47.59	23	1.09466	8.1	Pass
3	KONN4	FKRN2102260 91-1A	17	81.00	1.37700	6.70	Pass
4	C7B_2Cd	EKRN2200324 64-1A	66.61	24	1.59860	8	Pass
5	C7A_2Cd	EKRN2200324 62-1A	31.66	31	0.98157	6.9	Pass
6	T157_2mgCd	FKRN2102260 93-1A	217	36.00	7.81200	7.30	Pass
7	C7A_10Cd	EKRN2200324 63-1A	49.52	30	1.48568	6.5	Pass
8	C7B_10Cd	EKRN2200324 65-1A	61.00	27	1.64713	8.7	Pass
9	T155_10mgC d	FKRN2102260 92-1A	232	36.00	8.35200	8.30	Pass

Genus Dentitruncus

D. truttae - transcriptomics

- A total of 342,3 million clean reads were obtained by sequencing eight libraries (Table 1).
- Approximately, 39.8 to 46.1 million clean reads were obtained from each library

Table 1. Summary statistics of the transcriptomeassembly for D. truttae

Transcriptome feature	Values
Raw reads	347,357,875
Clean reads	342,293,411
Number of transcripts	133990
Number of unigenes	52585
Average length (bp) transcripts	1026
Average length (bp) unigenes	912
N50 transcripts	1407
N50 unigene	1250
GC content	45,2%

Length Distribution

Figure 1. Length distribution of *D. truttae* unigenes 9

EXPOSURE EXPERIMENTS

Transcriptome feature	Values
Raw reads	69129998,11
Clean reads	68120231,56
Number of transcripts	165845
Number of unigenes	63975
Average length (bp) transcripts	638
Average length (bp) unigenes	539
N50 transcripts	1276
N50 unigene	1106
GC content	45,6%

Length Distribution

Functional annotation

Environment

Statistical Items	Number of Unigenes	Percent (%)
Total Unigenes	52585	100
Annotated in SwissProt	6087	11.57
Annotated in PFAM	13796	26.23
Annotated in NT	1701	3.23
Annotated in NR	14947	28.42
Annotated in KOG	3834	7.29
Annotated in KO	4432	8.42
Annotated in GO	13790	26.22
Annotated in at least one Database	21806	41.46
Annotated in all Databases	621	1.18

Exposure

Statistical Items	Number of Unigenes	Percent (%)
Total Unigenes	63975	100
Annotated in SwissProt	7442	11.63
Annotated in PFAM	16422	25.66
Annotated in NT	1534	2.40
Annotated in NR	17702	27.67
Annotated in KOG	4691	7.33
Annotated in KO	5256	8.21
Annotated in GO	16422	25.66
Annotated in at least one Database	25785	40.3
Annotated in all Databases	806	1.26

Only 3.4% or 2.6% of the unigenes matched with sequences in the transcriptome database of *Salmo salar*. Similarly, Mauer at el. (2020) showed 4% of contigs from *Pomphorhynchus laevis* matched with sequences in the genome and transcriptome database of its fish host (*Cyprinus carpio*).

Contamination with host DNA should not play an important role in the *D. truttae* transcriptome.

Environmental

Similarity Distribution

Exposure

Similarity Distribution

15

5

0

10

Percent of Genes (%)

Environmental

Exposure

Е

D

С

В

А

15

Environmental

Exposure, 2 mg Cd²⁺

Log2Fold Change	KOG description	Log2Fold Change	KOG description
77.508	Cytochrome oxidase subunit III and related proteins	97.944	-
68.795	-	59.306	-
66.901	Cytochrome c oxidase subunit II and related proteins	55.397	-
62.484	Cytochrome c oxidase subunit I	55.019	-
60.446	Cytochrome b	54.699	Ctr copper transport family
56.967	ATP Synthase F0 subunit 6 and related proteins	54.507	Gammaherpesvirus membrane protein
50.379	NADH dehydrogenase, subunit 4	54.399	-
48.626	NADH dehydrogenase subunits 2,5, and related proteins	53.412	-

Exposure 10 mg²⁺

Log2Fold Change	KOG description
99.332	Barrier to autointegration factor
97.071	-
94.507	-
89.716	-
89.406	-
84.199	-
79.333	Phosphatase activity
71.026	Pneumovirus glycoprotein

Lower level of exposure exposure

PF17068//PF1211	Required for respiratory growth protein 8 mitochondrial//Protein of unknown function (DUF3586
PF03776	Septum formation topological specificity factor MinE
PF12678//PF0007	RING-H2 zinc finger domain//Zinc finger, C3HC4 type (RING finger)
PF15320	mRNA cap methylation, RNMT-activating mini protein
PF09271	LAG1, DNA binding
PF01478	Type IV leader peptidase family
PF01222	Ergosterol biosynthesis ERG4/ERG24 family
PF09478//PF0050	Carbohydrate binding domain CBM49//Ion transport protein//Malonate transporter MadL
/	subunit//ARID/BRIGHT DNA binding domain
PF03219	TLC ATP/ADP transporter

Higher level of exposure

	PF06888	Putative Phosphatase		
	PF00802	Pneumovirus attachment glycoprotein G		
	PF00648	Calpain family cysteine protease		
	PF12678//P	F04147//PF1	RING-H2 zinc finger domain//Nop14-like family//Beta defensin	
PF07714//PF00069		F00069	Protein tyrosine and serine/threonine kinase//Protein kinase domain	
	PF04145//P	F08918	Ctr copper transporter family//PhoQ Sensor	
PF03727//PF00349		F00349	Hexokinase//Hexokinase	
PF00349//PF03727		F03727	Hexokinase//Hexokinase	

Quantitative RT-PCR, RNA extraction

Locality	Sample	RNA concentration(ng/µL)	OD 260/280	OD 260/230
KRS	AC 2 P2	274,97	2,20	2,40
KRS	AC 3 P2	220,95	2,21	2,44
KRK	AC 3 P1	125,71	2,11	2,24
KRK	AC 4 P1	303,05	2,16	2,39
KRK	AC 1 P1	123,63	2,11	2,14
KRK	AC 5 P1	176,17	2,14	2,24
KRS	AC 6 P2	138,34	2,11	2,25
KRK	AC 7 P1	183,48	2,10	2,15
KRK	AC 8 P1	121,68	2,14	2,1
KRS	AC 1 P2	95,99	2,11	2,25
KRS	AC 4 P2	190,42	2,09	2,04
KRS	AC 5 P2	111,44	2,08	2,02
KRS	AC 7 P2	185,31	2,12	2,34
KRS	AC 8 P2	129,12	2,11	2,32

Quantitative RT-PCR, primer synthesis

Primer 3 software (NCBI)

NIH National Library of Medicine National Center for Biotechnology Information						
	Primer-BLAST A tool for finding specific primers					
	Finding primers specific to your PCR template (using Primer3 and BLAST).					
Primers for target on one ter	nplate Primers common for a group of sequences					
PCR Template	Retrieve recent results Publication Tips for finding specific primers					
Enter accession, gi, or FASTA se	auence (A refsea record is preferred) ? Clear Range ? Clear					
Or, upload FASTA file	From To Forward primer Image: Choose File No file chosen Reverse primer					
Primer Parameters						
Use my own forward primer (5'->3' on plus strand) Use my own reverse primer (5'- >3' on minus strand)	Clear Clear Min Max					
PCR product size	70 1000					
# of primers to return						
Primer melting temperatures (T _m)	Min Opt Max Max T _m difference 57.0 60.0 63.0 3 2					
Exon/intron selection	A refseq mRNA sequence as PCR template input is required for options in the section 2					
Exon junction span	No preference V					
Exon junction match	Min 5' match Max 3' match 7 4 8 Minimal and maximal number of bases that must anneal to exons at the 5' or 3' side of the junction 2 2					
Intron inclusion	Primer pair must be separated by at least one intron on the corresponding genomic DNA 3					
Intron length range	Min Max 1000 10000 ?					

Reference Genes

Turne	Sociones nomo	Somuchen	Turne	Soguoncon
DNA	MD f1	GAGGGCACTTGGGTGTCCAT	DNA	cox1_f1
DNA	MD_r1	GCTCCTCTGCTGTCAAGTCCA	DNA	cox1_r1
DNA	MD_f7	ACTGTTCAACAACGTGGTGC	DNA	cox1_f5
DNA	MD_r7	GGGGTTCCAAGGACCCAATCA	DNA	cox1_r5
DNA	MD_t8	GCGGATGATGCATGGTTGAAGG	DNA	cox1_t7
DNA	MD f9	CCCTGTCACTTGTCGCAATGG	DNA	cox1_f10
DNA	MD_r9	TGAGGCATGAGTAAGCCAAGGT	DNA	cox1_r10
DNA	MD_f10	TGGAACCCCAGAGGGCACTT	DNA	cox2_f1
DNA	MD_r10	TCTTCCACTCTCCATTGCGACA	DNA	cox2_r1
DNA	Actin1_f1	GCAGTGTCAAGTCGCCGATG	DNA	cox2_f3
DNA	Actin1_r1	GACAGGCGTAGCTTCGAGGT	DNA	cox2_r3
DNA	Actin1_f2	AGATCATGACCGAGCGTGGG	DNA	cox2_f4
DNA	Actin1_r2	AAGCGCTCGTTACCGACTGT	DNA	cox2_r4
DNA	Actin1_f3	CCTGTATGCTTCGGGCAGGA	DNA	cox2_f7
DNA	Actin1_r3	TTCACGCTCAGCCGTCGTAA	DNA	cox2_r7
DNA	Actin1_f8	GCCGTTATGGTTGGCATGGG	DNA	cox1_f1
DNA	Actin1_r8	AGGATCCCACGCTTGCTCTG	DNA	cox1_r1
DNA	Actin1_f10	TACGACGGCTGAGCGTGAAA	DNA	cox1_f2
DNA	Actin1_r10	TAGAGCCTCTGGACACCGGA	DNA	cox1_r2
DNA	EIF4E_f1	CCTGAGGTGCAGGCTCCTTT	DNA	cox1_f7
DNA	EIF4E_r1	AGAGCACGAGCATCAAGCCA	DNA	cox1_r7
DNA	EIF4E f4	CTGTTCGCCAACCAACGCAA	DNA	cox1_f10
DNA	EIF4E r4	AACGGGTTGAGTGTCGGGTC	DNA	cox1_r10
DNA	EIF4E f6	CCGACACTCAACCCGTTTGG	DNA	ND4_f1
DNA	EIF4E r6	ACGCGGACAGCGGTTCTAAA	DNA	ND4_r1
DNA	EIF4E f7	TCAGACCCGACACTCAACCC	DNA	ND4_3f
DNA	EIF4E r7	AACGCGGACAGCGGTTCTAA	DNA	ND4_r3
DNA	FIF4F_f10	CCGCAAGTTCTGCCTTCTGTG	DNA	ND4_f7
DNA	FIF4F_r10	TIGCGTIGGTIGGCGAACAG	DNA	ND4_r7
DNA	TUBA 1f	GGCAATGATGCCCTGTTCGG	DNA	ND4_f9
DNA	TUBA 1r	ACCAGCGGGAAGTGGATACG	DNA	ND4_r9
DNA	TUBA 2f	TATCAACGGTCGTCCGCCAA	DNA	ND5_3f
DNA	TUBA 2r	CTAGCATGCACACGCTTCGG	DNA	ND5_r3
DNA	TUBA 6f	TCTACACCCCGAAGCGTGTG	DNA	ND5_f5
DNA	TUBA 6r	ACCUTUTEGGGTGTACCAGT	DNA	ND5_r5
DNA	TUBA 8f		DNA	ND5_f7
DNA	TURA Sr	TIGGCCCACAGCCGATAACT	DNA	ND5_r7
DNA	TUBA 10f	TGACTTGGTACCACTCGGCG	DNA	ND5_f9
DNA	TUBA 10r	COACCOCCUT GACCAATGT	DNA	ND5_r9
DNA	122 41		DNA	165_f2
DNA	122_11		DNA	165_r2
DNA	132_11		DNA	165_f3
DNA	132_14		DNA	165_r3
DNA	132_14	CCONTENCION	DNA	165_f4
DNA	132_15		DNA	165 r4
DNA	132_13		DNA	165 f5
DNA	132_18		DNA	165_r5
DNA	102_18		DNA	165 f9
DNA	102_1/		DNA	165 r9
DNA	L32 T7	LLGGLGGTIGTICITCAAGG		

Overexpressed Genes

Type	Sequencename	Sequence
DNA	cox1_f1	AGATAGCTGCCGTGAGGGTG
DNA	cox1_r1	GCCCGTGCTCCTTTCTCTCT
DNA	cox1_f5	GGCACCTTGGTTTCACTCGT
DNA	cox1_r5	ATCACCCTCACGGCAGCTAT
DNA	cox1_t7	GGAGCCGTAAACTGAGTCTGCT
DNA	cox1_f10	AGCGGCGGCAGCTAAAATTG
DNA	cox1 r10	ATCCGGCTCTCTATAGCCCA
DNA	cox2_f1	AGTTGGTTTAGGCGGCCTGG
DNA	cox2_r1	CGTTTGGTCACAACAGGGGC
DNA	cox2_f3	ACCATTGATGACCCACGGCT
DNA	cox2_r3	ACTCCCTCACCGACCGATTT
DNA	cox2_f4	TCTGCCCCTGTTGTGACCAAA
DNA	cox2_r4	AGCCGTGGGTCATCAATGGT
DNA	cox2_f7	AAATCGGTCGGTGAGGGAGT
DNA	cox2_r7	CCAAGACAGAGCTTCCCCCT
DNA	cox1 f1	GGGCCCACACGATAAAGCCT
DNA	cox1 r1	AGGGGGTGGAGACCCAATCT
DNA	cov1 f2	GGGGGTATGGGTGTTGTCACT
DNA	cox1_r2	AAGCGGTATACCACGTCGCT
DNA	cox1_12	
DINA	coxi_i/	GETAGATETACAGEGECTECT
DNA	cox1_F/	GGGTAGGCACAGGCTGAACT
DNA	cox1_t10	ACAAAAGCATGGGCTGTCACT
DNA	cox1_r10	GTGGTCGGCACCTCCCTTAG
DNA	ND4_f1	AAGGCTCACGTAGAAGCCCC
DNA	ND4_r1	TCTAGCTGCCGCAAACACCT
DNA	ND4_3f	GGGCGTACAGGCCTATGCTA
DNA	ND4_r3	ATCTAGCTGCCGCAAACACC
DNA	ND4_f7	GGGCCGCGTACAGGCTTTAT
DNA	ND4_r7	CCTACACAGAGTGCTACCGC
DNA	ND4_f9	CCGTTTTGGGCGTACAGGC
DNA	ND4_r9	TGCTACGCCTCCTCACAAACT
DNA	ND5 3f	AGGGTGTCAAGATAGGCGGG
DNA	ND5 r3	GCATGCTCTAACACTGAGTCCT
DNA	ND5_f5	TTACCCAGAAGACTAGGGGGCAT
DNA	ND5_r5	CCAACTACGCCCTCCTTGCC
DNA	NDS_F7	GGGTGTCAAGATAGGCGGGTT
DNA	ND5_17	
DNA	ND3_17	AGCATGETETAACACTGAGTEC
DNA	ND5_19	AAGGGTGTCAAGATAGGCGGG
DNA	ND5_r9	AGCATGCTCTAACACTGAGTCCTT
DNA	165_f2	CCAAGAGTTGCTAGGGGCGA
DNA	165_r2	CACTGACCCCACGCCAGTAA
DNA	165_f3	GGTCGCAACCCTGTCGTTTG
DNA	165_r3	ACCCGGTACGCCGATCAAAA
DNA	165_f4	TTGATACAGCCCCCACCACG
DNA	165_r4	TCGCCCCTAGCAACTCTTGG
DNA	165_f5	TTTTGGTAAACAGGCGGGCG
DNA	165_r5	GGAGCAGCCATCCTGAGTGT
DNA	165_f9	TGGGCGCGGATAGAAACCAA
DNA	165_r9	GACAGGGTTGCGACCTCGAT

Transcriptome of fish intestine

Length Distribution

Transcriptome of fish intestine

R- reference P- polluted Low – low number of parasites Medium – medium number of parasites High- high number of parasites

KEGG Classification

PlvsRI (GO)

plasma membrane (n=324) molecular transducer activity (n=293) extracellular space (n=154) cargo receptor activity (n=26) receptor ligand activity (n=229) transmembrane transport (n=756) protein glycosylation (n=90) reproductive process (n=216) defense response to other organism (n=130) snRNA metabolic process (n=10)

-log10(padj)

LowvsMedium (GO)

MediumvsHigh (GO)

Thank you for your attention!

24

0