Functional characterization of the fungal specific protein Taf14 in S.cerevisiae and C. albicans
nvasive fungal infections have become an important cause of mortality in immunocompromised and severely ill patients, in both the developing world and western countries. The mortality rates from these infections can reach 50% or more. Candida albicans is the most common human fungal pathogen, causing mucosal infections and systemic invasive disease. A key feature of fungi is that they are eukaryotic organisms closely related to their human host, posing a problem for the design of safe, but effective antifungal therapy.
Excitingly, we have identified a new fungal-specific factor not conserved in humans, Taf14, which represents a promising antifungal drug target. Current studies suggest that Taf14 plays a role in transcription and DNA repair, and potentially impacts on two key virulence attributes in C. albicans, adherence and filamentous growth. However, the molecular functions of this factor are unknown. Targeting Taf14 or the process it regulates would represent a completely novel approach to antifungal therapy.